Awake Craniotomy and Intraoperative MR Imaging

IMRIS Clinical Bulletin
Recently, the team at Washington University & Barnes-Jewish Hospital, St Louis MO has published a paper that provides compelling information about combining an awake craniotomy and intraoperative MR imaging (iMRI) in a single surgical case in a VISIUS Surgical Theatre™.

Hospital Profile

» Located in St Louis, Missouri, USA

» Top 15 – U.S. News & World Report’s list of Best Hospitals for Neurology & Neurosurgery, 2011-1012

» Prof. Ralph G. Dacey is the Chairman of the Department of Neurosurgery at Washington University School of Medicine and Chief of Neurosurgery at Barnes Jewish Hospital

» Five dedicated neurosurgery operating rooms and a 20-bed neuro-intensive care unit (NICU)

» VISIUS Surgical Theatre opened April 2008

Published Paper

Use of Movable High-Field-Strength Intraoperative Magnetic Resonance Imaging With Awake Craniotomies for Resection of Gliomas: Preliminary Experience

Eric C. Leuthardt, MD*‡
Chris C. H. Lim, FRCS*§
Manish N. Shah, MD*

Keith M. Rich, MD*
Ralph G. Dacey, MD*
John A. Evans, RN*

Rene Tempelhoff, MD* ¶
Michael R. Chicoine, MD*

Departments of *Neurological Surgery and ‡Biomedical Engineering, Washington University, St Louis, Missouri; §Department of Neurosurgery, Beaumont Hospital Dublin, Ireland; ¶ Department of Anesthesia, Washington University School of Medicine, St. Louis, Missouri

Surgical Techniques

In addition to the standard surgical techniques, the article describes seven additional steps required for an Awake Craniotomy:

1. Start diuresis early to minimize brain swelling.

2. Bring patient into deep sedation and perform regional anesthetic scalp blocks once the patient is adequately secured to the operating table (beanbag and straps). Place the patient in a lateral recumbent position and place the table in an approximate 40° angle of the reverse Tredelenburg position.

3. Position and clamp the head, taking into consideration the position of the lesion for high-resolution iMRI.

4. Register patient to the frameless stereotactic navigation system.

5. Place the lower half of the 8-channel MRI coil.

6. Inject local anesthetic around the site of the planned incision.

7. Draping the patient, using a Mayo stand near the head to maintain the patient’s line of vision for the awake portions of the procedure.

While these seven additional steps are being performed, all surgical instruments were counted by the surgical team before the iMRI was performed. After exposing the dura, the patient was wakened and standard motor and speech mapping were performed with electrocortical stimulation.
Clinical Results

The study reviewed 12 patients from a prospective database. All patients had a Karnofsky Performance Status of greater than 70 at the time of surgery, and all patients underwent one iMRI session.

Demographics

- **Symptoms**
 - Seizures
 - Transient dysphasia
 - Hemiparesis
 - Headaches
 - Dizziness

- **Functional Mapping**
 - Motor and speech
 - Speech only
 - Motor only

- **Area Mapped**
 - Left side
 - Right side
 - Temporal
 - Temporoparietal
 - Frontoparietal

Neurological outcome

- **Post-op**
 - Stable/improved: 58%
 - Residual tumor (91.7%)

- **1 month follow-up**
 - Stable/improved: 91.7%

Final result

- 7/12 achieved near/total resection
- 12 patient study

(Specimens taken from 5/6 patients; 100% showed tumor)
Use of Movable High-Field-Strength Intraoperative Magnetic Resonance Imaging With Awake Craniotomies for Resection of Gliomas: Preliminary Experience

BACKGROUND: Awake craniotomy with electrocortical mapping and intraoperative magnetic resonance imaging (iMRI) are established techniques for maximizing tumor resection and preserving function, but there has been little experience combining these methodologies.

OBJECTIVE: To report our experience of combining awake craniotomy and iMRI with a 1.5-T movable iMRI for resection of gliomas in close proximity to eloquent cortex.

METHODS: Twelve patients (9 male and 3 female patients; age, 32-60 years; mean, 41 years) undergoing awake craniotomy and iMRI for glioma resections were identified from a prospective database. Assessments were made of how these 2 modalities were integrated and what impact this strategy had on safety, surgical decision making, workflow, operative time, extent of tumor resection, and outcome.

RESULTS: Twelve craniotomies were safely performed in an operating room equipped with a movable 1.5-T iMRI. The extent of resection was limited because of proximity to eloquent areas in 5 cases: language areas in 3 patients and motor areas in 2 patients. Additional tumor was identified and resected after iMRI in 6 patients. Average operating room time was 7.9 hours (range, 5.9-9.7 hours). Compared with preoperative neurological function, immediate postoperative function was stable/improved in 7 and worse in 5; after 30 days, it was stable/improved in 11 and worse in 1.

CONCLUSION: Awake craniotomy and iMRI with a movable high-field-strength device can be performed safely to maximize resection of tumors near eloquent language areas.

KEY WORDS: Awake craniotomy, Glioma, iMRI, Intraoperative magnetic resonance imaging, Movable high-field-strength iMRI
Awake Craniotomy and iMRI

Suggested Readings:

